No. 10 (1995): Contents and methods in teaching
Contents and methods in mathematics teaching

Teaching mathematics. A pending problem

César Sáenz de Castro
Instituto de Ciencias de la Educación. Universidad Autónoma de Madrid
Published May 15, 1995

Keywords:

Teaching of mathematics, Methods, Epistemology, Psichology
How to Cite
Sáenz de Castro, C. (1995). Teaching mathematics. A pending problem. Tarbiya, Revista De Investigación E Innovación Educativa, (10), 41–53. Retrieved from https://revistas-new.uam.es/tarbiya/article/view/20200

Abstract

The teaching of Mathematics is an unsolved and controversial issue. In this article some topics are analyzed which are sistemacically questioned in different publications about the teaching of Mathematics such as the programmes of study, the role of teachers and their training, the different methods and the teaching-learning activities, and the role of computers. This article also tries to make readers think about the teaching of Mathematics and its relation with two other disciplines which are considered relevant: epistemology and educational psichology. This relationship is so considered because the teaching-learning process is regarded from a multidiscipline perspective where other scientific disciplines influence the teaching of Matematics.

Downloads

Download data is not yet available.

References

AUSUBEL, D.P., NOVAK, J.D. y HANESIAN, H. (1978). Educacional psychology. A cognitive view. New York: Holt, Rinehart y Winston. Versión castellana: Psicología educativa. México: Trillas, 1983.

BEYTH-MAROM, R. y DEKEL, S. (1983). A curriculum to improve thinking under uncertainity. Instructional Science, 12, 67-72.

DÖRFLER, W. (1984). Actions as a means for acquiring mathematical concepts. En Proc. Eighth Intern. Conf. for the Psychology of Mathematics Education (pp. 172-180). Sydney.

DÖRFLER, W. y MCLONE, R.R. (1986). Mathematics as a school subjcct. En B. Christiansen, A.G. Howson y M. Otte (Eds.), Perspectives on Mathematics Education (pp. 49-97). Dordrecht: Reidel.

DRIVER, R., GUESNE, E. y TIBERGHIEN, A. (1985). Childrens ideas in science. Milton Keynes: Open University Press: Trad. castellana de P. Manzano: Ideas científicas en la infancia y la adolescencia. Madrid: Morata/MEC, 1989.

FISCHBEIN, E. (1987). Intuition in science and mathematics. An educacional approach. Dordrecht: Reidel.

FREUDENTHAL, H. (1973). Mathematics as an educacional task. Dordrecht: Reidel.

GODEL, K. (1981). Sobre sentencias formalmente indecidibles de «Principia Mathematica» y sistemas afines. Obras Completas. Madrid: Alianza. (Original de 1931).

INHELDER, B. y PIAGET, J. (1955). De la logique de l'enfant à la logique de l'adolescent. Essai sur la construction des structures operatoires formelles. París: P.U.F. Trad. castellana de M.T. Cevasco: De la lógica del niño a la del adolescente. Buenos Aires: Paidós, 1972.

KAPADIA, R. y BOROVCNIK, M. (1991). The Educational perspective. En R. Kapadia y M. Borovcnik (Eds.). Chance encounters: probability in education, (pp. 1-26). Amsterdam: Kluwer.

KUHN, S.T. (1970). The structure of scientific revolutions, Chicago: The University of Chicago Press.

LAKATOS, I. (1981). Matemáticas, ciencia y epistemología. Madrid: Alianza Universidad.

PAPERT, S.L. (1980). Mind-Storms. Children, computers and powerful ideas. New York: Basic Books, Inc.

PÓLYA, G. (1981). Mathematical discovery. Nueva York: Wiley.

POZO, J.I. (1987). ...Y, sin embargo, se puede enseñar ciencia. Infancia y Aprendizaje, 38, 109-113.

POZO, J.I., GÓMEZ CRESPO, M.A., LIMÓN, M. y SANZ SERRANO, A. (1991). Procesos cognitivos en la comprensión de la ciencia: las ideas de los adolescentes sobre la química. Madrid: CIDE.

ROSEBERY, A.S. y RUBIN, A. (1989). Reasoning under uncertaintly: developing statistical reasoning. Journal of Mathematical Behavior, 8, 205-219.

SÁENZ, C. (1995). Intuición y matemática en el razonamiento y aprendizaje probabilístico. U.A.M. (Tesis doctoral no publicada).

SHAUGHNESSY, J.M. (1992). Research in probability and statistics: reflections and directions. En D.A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 465-494). New York: McMillan Publishing.

STEINBRING, H. (1991). The theoretical nature of probability in the classroom. En R. Kapadia y M. Borovcnick (Eds.), Chance encounters: Probability in education (pp. 135-167). Amsterdam: Kluwer.

THOMPSON, A.G. (1989). Learning to teach mathematical problem solving: Changes in teachers' conceptions and beliefs. En R. Charles y E. Silver (Eds.), The teaching and assessing of mathematical problem solving (pp. 232-243). Reston, V A: National Council of Teachers of Mathematics.